

Anuj Kumar

Phone: 984-255-3285 | Email: anujv12@gmail.com
LinkedIn: anuj-kumar-9b7b8393 | Website: anujv12.github.io
Google Scholar | GitHub

EDUCATION

PhD in Mechanical Engineering , Minor in Applied Mathematics (GPA: 4.0/4.0)	Aug. 2019 – Jul. 2024
<i>North Carolina State University</i>	<i>Raleigh, NC</i>
MS in Mechanical Engineering (GPA: 4.0/4.0)	Aug. 2019 – Sep. 2024
<i>North Carolina State University</i>	<i>Raleigh, NC</i>
Bachelor of Technology in Mechanical Engineering (GPA: 8.4/10.0)	Jul. 2012 – May 2016
<i>Indian Institute of Technology Kanpur</i>	<i>Kanpur, India</i>

TECHNICAL SKILLS

Programming Languages: Python, Julia, C, Fortran, MATLAB
Developer Tools: JAX, PyTorch, Git, VS Code, Azure ML, CI/CD
ML Architectures: Transformers, GNN, Neural ODE, CNN-based, Operator-learning-based, Neural Fields, PINNs
Software Packages/ Simulation Codes: ANSYS Fluent, CONVERGE, Tecplot, Cantera, S3D, US3D
Miscellaneous: MPI, HPC, PETSc, Turbulence, CFD, ROM, Chemical Kinetics, Dynamical Systems

WORK EXPERIENCE

<i>Simulation Intelligence Scientist</i> , Pasteur Labs Inc.	Jul. 2024 – Present
• Design and implement production-ready graph/point-cloud surrogates in JAX and PyTorch; built ML-ready data pipelines and preprocessing for reliable training, testing, and deployment.	
• Researched geometry encoding, global-interaction designs in MGNs and enforcing physical symmetries for steady-state surrogacy, enabling strong generalization on real-world CAD/CAE geometries.	
• Design and implement subsampling and subgraph partitioning strategies to scale surrogacy to arbitrarily large CAE datasets, enabling training/inference without memory bottlenecks.	
• Collaborate with cross-functional teams and external research partners to drive innovation, validate methodologies, and align Simulation Intelligence (SI) advancements with real-world constraints.	

<i>Research Assistant</i> , Computational Combustion and Energy Sciences Lab, NCSU	Jan. 2021 – Jul. 2024
React-DeepONet: An Efficient Deep Learning Chemical Kinetics Solver	

- Developed an efficient and robust surrogate model for stiff chemical kinetics based on Deep Operator Networks
- Devised novel DeepONet architecture and training mechanism for robustness and physical constraints compliance
- Efficiently integrated Python(JAX) based surrogate ML model with C based CFD simulation code(Converge)
- Achieved speed-up of 100x for a highly complex turbulent combustion system of ECN Spray A

Turbulent Combustion Closure with Physics-Informed DeepONet	<i>In collaboration with a lab-mate</i>
• Modeled physics-informed DeepONet and formulated its training mechanism in JAX	
• Modified the architecture to isolate training for turbulence and combustion and extract the source terms for species	
• Obtained species source terms and high-fidelity scalar values from sparse experimental observations	

Reduced-Order Modeling of Turbulent Combustion	<i>In collaboration with Sandia National Lab.</i>
• Formulated low-dimensional reacting flow Navier-Stokes equations in form of Principal Components (PCs)	
• Modified S3D simulation code and obtained robust and accurate mapping for PC source terms via ML models	
• Achieved speed-up of 80x with high accuracy on a laboratory-scale Bunsen flame	

<i>Research Aide - PhD</i> , Multi-Physics Computations, Argonne National Lab.	May 2023 – Dec. 2023
Neural ODE Surrogate Model for Stiff Chemical Kinetics	
• Implemented second-order optimizer (Levenberg–Marquardt) for efficient model training and robust predictions	
• Deployed physics-informed formulation for faster training and physically compliant and robust predictions	
• Devised Latent Space Kinetics Identification framework through Neural ODE for large and complex fuels	

Stability and Resolvent Analysis of Turbulent Boundary Flows

- Identified the unstable Reynolds number through eigenvalue analysis of the linearized flow operator
- Formulated reduced order dynamics through Resolvent Analysis on time averaged mean flow data
- Captured low-frequency unsteadiness and identified most-energetic turbulent eddies after flow separation in the shock-wave turbulent boundary layer interaction

INVITED TALKS AND CONFERENCE PRESENTATIONS

1. Summer Geometry Initiative, MIT (Guest Lecture) Level-of-Detail Thinking of Scientific ML Surrogates	Jul. 2025
2. The Crunch Group, Brown University (Invited Talk) Efficient and Physically Consistent Surrogate Modeling of Chemical Kinetics Using Deep Operator Networks	Feb. 2024
3. NeurIPS 2023, Machine Learning and the Physical Sciences Physics - Informed Machine Learning for Reduced Space Chemical Kinetics	Dec. 2023
4. Multi-Physics Computations, Argonne National Lab. Development of a Neural ODE-based Scientific Machine Learning Framework Towards Acceleration of Combustion CFD Simulations	Dec. 2023
5. 76th Annual Meeting of the APS Division of Fluid Dynamics A Framework for Combustion Chemistry Acceleration with DeepONets	Nov. 2023
6. The 13th U.S. National Combustion Meeting Acceleration of Stiff Chemistry Integration with DeepONets	Mar. 2023
7. Multi-Physics Computations, Argonne National Lab. (Invited Talk) Combustion Simulation Acceleration via Principal Component (PC) Transport and Deep Operator Networks (DeepONets)	Mar. 2023
8. 75th Annual Meeting of the APS Division of Fluid Dynamics Acceleration of Turbulent Combustion Simulation through Principal Components Transport and Machine Learning	Nov. 2022
9. 18th International conference on Numerical Combustion Reduced Order Modeling of Turbulent Combustion via Principal Component Transport	May. 2022

LEADERSHIP

Manager Mechanical Maintenance, Sinter Plant, Tata Steel India	July 2016 – July 2019
<ul style="list-style-type: none"> Ensured availability of Sinter Plant Mechanical equipment as per set target Led a team of 25 members and trained them on various training modules 	
Vice-President, MAE Graduate Student Association	June 2022 – May 2023
<ul style="list-style-type: none"> Led the organization of key social and professional departmental events, enhancing community engagement Chaired weekly GSA committee meetings, ensuring leadership continuity and decision-making efficacy 	
National Cadet Corps Cadet, 2 UP Composite Technical Regiment	July. 2012 – May. 2013
<ul style="list-style-type: none"> Actively engaged in adventurous activities including parasailing and target shooting, and contributed to awareness rallies 	

PUBLICATIONS

- [1] **Anuj Kumar** and Tarek Echekki. Combustion Chemistry Acceleration with DeepONets. *Fuel*, 365:131212, 2024.
- [2] Arsalan Taassob, **Anuj Kumar**, Kevin M. Gitushi, Rishikesh Ranade, and Tarek Echekki. A PINN-DeepONet framework for extracting turbulent combustion closure from multiscale measurements. *CMAME*, 429:117163, 2024.
- [3] Ki Sung Jung, **Anuj Kumar**, Tarek Echekki, and Jacqueline H. Chen. On the application of principal component transport for compression ignition of lean fuel/air mixtures under engine relevant conditions. *Combustion and Flame*, 260:113204, 2024.
- [4] **Anuj Kumar** and Tarek Echekki. Physics - Informed Machine Learning for Reduced Space Chemical Kinetics. 2023. NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences.
- [5] Tadbhagya Kumar, **Anuj Kumar**, and Pinaki Pal. A Physics-Constrained NeuralODE Approach for Robust Learning of Stiff Chemical Kinetics. 2023. NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences.
- [6] **Anuj Kumar**, Martin Rieth, Opeoluwa Owoyele, Jacqueline H. Chen, and Tarek Echekki. Acceleration of turbulent combustion DNS via principal component transport. *Combustion and Flame*, 255:112903, 2023.
- [7] **Anuj Kumar** and Tarek Echekki. A Framework for Combustion Chemistry Acceleration with DeepONets. *arXiv preprint arXiv:2304.12188*, 2023.